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ABSTRACT: In this work, we report on the application
of fractional calculus to the modeling of the isochronal
behavior of complex magnetic susceptibility obtained from
polymer–magnetic nanocomposites composed of cobalt-
ferrite nanoparticles embedded into a chitosan matrix.
From the isochronal measurements of real and imaginary
parts of the complex magnetic susceptibility and tempera-
ture-dependent static measurements, performed at differ-
ent applied dc-fields, it was observed that the spins’
response is mainly leaded by three contributions, which
are attributed to the intrinsic magnetic anisotropy of the
particles, the surface-to-core spins exchange within par-
ticles and to the dipole-dipole interactions among par-

ticles. Accounting these contributions, the proposed
magnetic model was capable to describe, in very precise
way, the experimental behavior of both, real and imagi-
nary, parts of the complex magnetic susceptibility, at tem-
peratures below to that related to the transition of the
polymer–magnetic nanocomposite into the superparamag-
netic regime. VC 2011 Wiley Periodicals, Inc. J Appl Polym Sci
123: 2154–2161, 2012

Key words: polymer–magnetic nanocomposite; cobalt-
ferrite nanoparticles; chitosan; complex magnetic
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INTRODUCTION

Magnetic nanoparticles are an important class of
advanced material, since its properties can be sub-
stantially modified from an appropriate size and
morphology control. The magnetic properties of
nanostructured materials differ from their bulk
counterpart, because its magnetic order is confined
to small crystalline domains, composed by a reduced
amount of atoms or ions.1 Thus, energetic balance
between the magnetic anisotropy and magnetostatic
energies among spins, favors the fact that the mag-
netic ordering of nanoparticles is based on single
domains.2 As a consequence, the change on its mag-
netization does not occurs by domains walls motion,
instead it is necessary the coherent rotation of the
arranged spins of nanoparticles, which leads to
enhance its hysteretic characteristics.1 Nevertheless,
as particle size continues to decrease, spins become
capable to thermally fluctuate, consequently, high

temperature magnetic response of small single-do-
main particles can resembles a paramagnet.3 This
behavior is known as superparamagnetism and
occurs above certain temperature, called blocking
temperature (TB), at which spins orientation relaxes
to multiples metastables states at response times
shorter than measurement time.1,2

In addition to the aforementioned characteristics,
magnetic nanoparticles are capable to show devia-
tions from ordered magnetic arrangement, due to
the presence of a large amount of superficial atoms
or ions.4 Specifically, the studies of magnetic proper-
ties of ferrimagnetic nanostructures, such as spinel
ferrites, have suggested the existence of a layer of
disordered spins on the particles surface. Deviations
of normal ferrimagnetic ordering at spinel ferrite
nanoparticles have been attributed to incomplete
coordination on surface cations or to broken bonds
with its oxygen neighbors.4–7 This situation leads to
no colineal arrangement between surface spins and
ferrimagnetically ordered spins at nanoparticles
core, which has been suggested to be randomly
canted.8,9 Moreover, in systems with a high concen-
tration of nanoparticles, interactions among particles
can be significant, due to dipole–dipole interactions
and exchange interactions among particles in close
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contact; both kinds of interactions are important
sources of changes on the spins response. These
interactions can favor either parallel or antiparallel
orientation of spins, depending on particles mor-
phology, magnetic anisotropy and its sizes.4,10 There-
fore, magnetic nanoparticles systems can depict anal-
ogous behavior to that showed by glassy magnetic
materials (e.g., spin-glasses and diluted magnets),
where surface-to-core interactions and interactions
among particles can impose frozen magnetic states.
This situation leads to deviations from the picture of
single-domain particles as superspins with stable
magnetic ordering.4–10

To describe how these interactions contributes to
the magnetic response of a given nanoparticles sys-
tem, studies about the energetic barrier over which
spins relaxes emerge as good approaches.4 Accord-
ingly, the isochronal study of complex magnetic sus-
ceptibility, v* ¼ v0 � iv00, is a powerful tool for the
elucidation of how spins of nanoparticles relax
under dynamic stimuli, given by an applied ac mag-
netic field.11–13 Two typical magnetic relaxation
mechanisms can be observed in nanoparticles sys-
tems, depending on the degrees of freedom of the
spins to respond. For example, at polymer–magnetic
nanocomposites, where nanoparticles find them-
selves stabilized into a matrix,13,14 the relaxation of
the nanoparticles spins occurs through Néel-relaxa-
tion, which can be describe by means of an Arrhe-
nius-like formalism.15 However, since the nanopar-
ticles systems, specially the ferrimagnetic ones, show
certain degree of surface-to-core exchange and par-
ticles interactions, they can display deviations from
the Néel formalism, and the response of its spins
could be describe assuming cooperative relaxation
mechanism, such as that proposed by the Vogel-
Fulcher law (VFL).11–13,15

Moreover, when the nanoparticles of a magnetic
system have significant magnetic anisotropy energy,
which blocks the internal reorientation of its spins,
and the friction between particles and molecules of
the dispersion media can be easily overcame (e.g.,
ferrofluids), nanoparticles can display diffusional
rotation, to respond to external ac-field.15–18 This
relaxation mechanism is known as brownian-relaxa-
tion and takes place through the competition
between viscosity of dispersion media and thermal
fluctuations induced into the magnetic system.17

From dynamic magnetic measurements of v* is
possible to study magnetic relaxation phenomena,
because we can separate v* into its real and imagi-
nary parts. The real part, v0, represents the compo-
nent that is in-phase with the applied ac field,
whereas the imaginary part, v00, is proportional to
the p/2 out-of-phase or quadrature component of
dynamic magnetization. Hence, the imaginary com-
ponent can be related to the dissipated energy by

the magnetic system, whereas the real part is associ-
ated to partially stored energy.14,19 For the interpre-
tation of the experimental data of v*, it is necessary
to use mathematical models due to the complexity
of the dynamic magnetic properties of nanoparticles
systems. In this sense, the use of differential and in-
tegral operators of fractional order is a good alterna-
tive, as has been reported elsewhere.20

The goal of this work is the application of frac-
tional calculus to the modeling of isochronal com-
plex magnetic susceptibility of a polymer–magnetic
nanocomposite. Using this fractional magnetic model
we attempt to describe the relaxation phenomena
related to distinct sources that contribute to the mag-
netic response of polymer–magnetic nanocomposites.
The proposed model will be validated using experi-
mental data obtained from dynamic isochronal mag-
netic measurements of a reported polymer–magnetic
nanocomposite, composed by cobalt–ferrite nanopar-
ticles embedded into a chitosan matrix.21

MAGNETIC PROPERTIES OF CHITOSAN/
COBALT–FERRITE NANOCOMPOSITE

Instrumentation

The isochronal complex magnetic susceptibility of
the chitosan/cobalt-ferrite (CHN/CoF) nanocompo-
site was measured in a Quantum Design PPMS-9,
after a zero field-cooled (ZFC) process, using an
ac-field amplitude of 0.4 mT at frequencies of 10, 50,
100, 250, 500, 1000, 2500, 5000, and 10,000 Hz, in a
temperature interval between 2 and 300 K. In addi-
tion, static magnetic measurements of temperature-
dependent magnetization, r(T), were performed at
different applied magnetic fields, using a Quantum
Design MPMS SQUID-VSM magnetometer, in a tem-
perature interval between 1.8 and 300 K.

Description of experimental complex magnetic sus-
ceptibility behavior

Figure 1 shows the experimental curves of the real
part of the complex magnetic susceptibility, obtained
from CHN/CoF nanocomposite. As one can notice,
all curves display an increment on its magnitude as
temperature increases, until they reach a maximum
at a given temperature, TM, from which all curves
describe a decrease on its magnitude. To explain this
behavior, it is necessary to divide these features into
two regimes: one associated to a temperature inter-
val below TM, and another for temperatures above
TM.

4 At temperatures below TM, the increment of the
magnitude of the real part, as a function of tempera-
ture, can be explained as the thermally induced
relaxation of spins over the energetic barrier
imposed by the intrinsic magnetic anisotropy of the

POLYMER–MAGNETIC NANOCOMPOSITES 2155

Journal of Applied Polymer Science DOI 10.1002/app



particles. As temperature increases, the thermally
induced fluctuations over the spins activate its
response to the applied ac-field. This feature is also
observed on the curves of the imaginary part, which
describe an increment on its magnitude as tempera-
ture increases (see Fig. 2).

As temperature continue to increase, the curves of
the real part display a significant change on its slope
(see Fig. 1) at temperatures close to that associated
to the maximum of its imaginary counterparts (see
Fig. 2). This behavior can be explained as an incre-
ment on the population of relaxed spins as a func-
tion of temperature, which progressively becomes
capable to partially store and dissipate the magnetic
energy given from the applied ac-field. Thus, the
temperature at which the maximum of the imagi-
nary part occurs can be understood as the threshold
for the relaxation of the entire spins of the CHN/
CoF nanocomposite. Following this reasoning, once
that the entire spins population relaxes, and they are
capable to respond to the applied ac-field, one can
expect that the real part reaches its maximum and
its magnitude remains independent of temperature
increment. However, as Figure 1 shows, such feature
is not present in the curves of the real part; instead,
the curves describe a decrease on its magnitude as
temperature increases above TM.

To explain the decrease on the magnitude of the
curves of the real part (see Fig. 1) as temperature
increases above TM, it is necessary to elucidate the
phenomenon at this temperature. As temperature
reaches TM, the entire spins population on the nano-
composite is able to respond to applied ac-field.
Nevertheless, as temperature continues to increase
above TM, the thermal energy becomes greater than

the magnetic energy given to the spins from the ac-
field. This situation leads to instabilities on the spins
reorientation, and eventually its response no longer
follows the applied ac-field. Therefore, the phenom-
enon at TM can be related to the transition of the
magnetic system into the superparamagnetic regime.
As it has been documented in the literature, when a
magnetic nanoparticles system get into the superpar-
amagnetic regime, its magnetic ordering is blurred
by thermally induced fluctuations and its remanence
vanishes.1–4,22 Thus, is safe to argue that the
decrease on the magnitude of the curves of the real
part at temperature above TM occurs due to the van-
ishing of the magnetic ordering on CHN/CoF
nanocomposite.
Moreover, it is worth to mention that, as Figure 1

shows, the temperature at which the curves of the
real part exhibit their maximum tends to increase as
frequency increases, as well as they show a decrease
on the magnitude of their maximum, which is pro-
portional to the frequency increment. The shift on
the curves maximum to higher temperatures as fre-
quency increases corroborates that the blocking pro-
cess at TM is thermally activated. Furthermore, the
decrease on the magnitude of their maximum as fre-
quency increases seems to be related to the incre-
ment on the maximum of the curves of its imaginary
counterparts (see Fig. 2). This increment can be
explained as an increment of the portion of magnetic
energy that is dissipated as frequency increases,
since the time window associated to dynamic mea-
surement becomes narrower and very close to the
nanoparticles spins response time. This means that
as frequency increases, the response time of

Figure 1 Isochronal behavior of real part of complex
magnetic susceptibility obtained at 10, 50, 100, 250, 500,
1000, 2500, 5000, and 10,000 Hz from polymer–magnetic
CHN/CoF nanocomposite.

Figure 2 Isochronal behavior of imaginary part of com-
plex magnetic susceptibility obtained at 10, 50, 100, 250,
500, 1000, 2500, 5000, and 10,000 Hz from polymer–mag-
netic CHN/CoF nanocomposite. Inset shows the evolution
of maximum of imaginary part curves in a graph of ln(s)
versus T�1.
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nanoparticles spins become longer than the width of
the time window of the dynamic measurement,
hence the nanoparticles spins needs to reduce its
response time to follow the applied ac-field and
relax. Following this reasoning, the relaxation of
spins on the CHN/CoF nanocomposite should begin
at higher temperatures as frequency increases (see
Fig. 1). Thus, it is possible to state that the response
time of spins evolve and become shorter as tempera-
ture increases, which unequivocally indicates that its
relaxation is thermally activated, and the relaxation
mechanism could be describe by the Néel
formalism.

To elucidate the manner that the spins relax, we
proceed to analyze the evolution of the curves’ max-
imum of the imaginary part in a graph of ln(s) ver-
sus T�1 (see inset at Fig. 2), where s represents the
response time of the spins on CHN/CoF nanocom-
posite, and it can be related to the frequency (f)
according to s � (2pf)�1. As one can notice, the fit-
ting given by the Néel formalism and that suggested
by VFL, follow in close correspondence the experi-
mental data of the evolution of the maximum on
those curves. Nevertheless, the value of s0, obtained
from the Néel formalism (4.3 � 10�16 s), lacks of
physical meaning, suggesting significant particles
interactions, which in addition to their intrinsic mag-
netic anisotropy, blocks the relaxation of its spins.15

Accordingly, it is safe to argue that the relaxation
process of spins is cooperative in nature, since it can
be described as a collective response of an assembly
of interacting particles, that found themselves
blocked to relax due to its interactions at tempera-
tures below T0.

4,11,23–25 The magnitudes of the pa-
rameters obtained from the VFL fitting are: EA ¼ 1.6
� 10�20 J, T0 ¼ 35.4 K, and s0 ¼ 9.3 � 10�12 s. Fur-
thermore, from these results, and considering the
reported magnetic properties of the CHN/CoF nano-
composite,21 the relaxation of its spins could be also
leaded by a blocking process associated to disor-
dered frozen spins layers on the CoF nanoparticles
surface.4,11,13 Thus, it is possible to assume that the
relaxation of spins is mainly leaded by three contri-
butions: intrinsic magnetic anisotropy of the par-
ticles, surface-to-core exchange, and particles
interactions.

Elucidation of the contributions on the particles
spins response

To elucidate the manner that each contribution leads
the response of spins, we proceed to evaluate r(T)
at different applied dc-fields, measuring its ZFC and
field-cooled (FC) static magnetic properties. It has
been reported that from the study of temperature
derivative of the difference between FC and ZFC
magnetizations, � d(rFC � rZFC)/dT(T), it is possible

to obtain qualitative information regarding the relax-
ation processes on interacting particles magnetic sys-
tems.26 Accordingly, Figure 3 shows � d(rFC �
rZFC)/dT(T) curves, obtained at the indicated dc-
fields from CHN/CoF nanocomposite. As it can be
noticed, the curve obtained from the measurement
at 10 mT shows a maximum at Ta ¼ 6 K. The maxi-
mum on this curve could be understood as the onset
for the response of ordered spins in the nanopar-
ticles. Moreover, a wide band with a maximum at Tb

¼ 47 K can be also observed, which becomes nar-
rower and shifts to lower temperatures as dc-field
increases. This feature can be explained as follow.26

At low temperatures, the population of spins is
blocked to respond to the applied field. As tempera-
ture increases above Ta, the spins begin to thermally
fluctuate and become able to respond to the applied
dc-field. This situation contributes to increase the
magnetization of the nanocomposite. In addition, as
temperature approaches to Tb, the spins on the nano-
composite progressively overcome the energetic bar-
rier that blocked its relaxation, and become free to
respond to the applied field. This feature is observed
as a difference on the magnitude of the maximum at
Tb from that observed at Ta. Following this reason-
ing, the shift of the maximum at Tb suggest that as
dc-field increases, the magnetic energy added to the
nanocomposite polarize the surface-to-core exchange
and the interaction among particles. Thus, is safe to
argue that the band at Tb reflects a qualitative pic-
ture of the width of the energetic barrier over which
the spins relax, since the width of this energetic bar-
rier becomes narrower as the contributions from the
surface-to-core exchange and particles interactions
are blurred by its polarization. In such case, the
magnetic ordering of spins on the nanocomposite

Figure 3 Graphs of the temperature derivative of the dif-
ference between FC and ZFC magnetization in function of
temperature obtained at the indicated dc-field from poly-
mer–magnetic CHN/CoF nanocomposite.
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could be described as Figure 4 suggests. In Figure
4(a), the spins arrangement within CoF nanoparticles
is illustrated, where a ferrimagnetic ordering at its
core, which deviates to a randomly canted spins
arrangement near to the nanoparticle’s surface, can
be noticed. In addition, Figure 4(b) shows a sche-
matic of assembled nanoparticles due to dipole–
dipole interactions. It is worth to mention that Fig-
ure 4 only represents a schematic picture elucidated
from the observed magnetic behavior on this nano-
composite, although analogous spins arrangements
have been previously calculated from finite element
and Monte Carlo simulations for others magnetic
systems of spinel ferrites nanoparticles.4,27,28

MODELING OF ISOCHRONAL COMPLEX
MAGNETIC SUSCEPTIBILITY OF CHITOSAN/

COBALT-FERRITE NANOCOMPOSITE

The fractional calculus and the resistor-inductor
fractional element

The fractional calculus is the branch of mathematics
that deals with the generalization of integrals and
derivatives of real orders.29 In this work we use a
reported fractional element, which can perform an
intermediary behavior between magnetic–inductor
and electrical resistance.20 This fractional element is
called fractional resistor–inductor or FRI, and its
constitutive equation can be expressed as:

V tð Þ ¼ R
L

R

� �adaI tð Þ
dta

¼ RsaDa
t I tð Þ with 0 � a � 1; (1)

where V(t) is the applied voltage, R and L are the
electric resistance and magnetic inductance magni-
tudes, respectively, and s ¼ L/R is the characteristic
response time, called relaxation time, which can be
associated with the required time for the reorienta-
tion of particles’ spins to a new equilibrium state.
Finally, Da

t I(t) is the fractional derivate of the ath
order of the electrical current with respect to time,
which can be defined by the Riemann-Liouville de-
rivative as:

Da
t I tð Þ ¼ D

Z t

0

1

C 1� að Þ
I yð Þ
t� yð Þa dy with a 2 ð0; 1Þ;

(2)

where C is the Gamma function:

C xð Þ ¼
Z 1

0

euux�1
� �

du with x > 0; (3)

and ‘‘y’’ is a mathematical variable used in Riemann-
Liouville derivative. The Riemann-Liouville equation
is calculated from eq. (3), which is a fractional inte-
gral defined between 0 and time (t):

D�a
t IðtÞ ¼

Z t

0

1

CðaÞ
I yð Þ

t� yð Þ1�a
dy with a 2 ð0;1Þ: (4)

It is worth to mention that a fractional derivative
[see eq. (2)] represents a convolution integral in
which the function I(t) is convolved with the
impulse-response function of ath order. In this

Figure 4 Schematic of (a) surface-to-core spins exchange and (b) dipole–dipole interparticle interactions that guide the
magnetic response of polymer–magnetic CHN/CoF nanocomposite.
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context, eqs. (2) and (4) describe how a given state
of a system is influenced by all states at earlier
times. On another hand, from the physical point of
view, the fractional order of a fractional integral [see
eq. (4)] can be considered as an indication of the
remaining energy in such system, given from a sig-
nal passing through it (e.g., signals given from me-
chanical, electrical, or magnetic stimuli).
Furthermore, the fractional order of the fractional
derivative reflects the rate at which a portion of the
energy is dissipated by the system.

The constitutive equation of the FRI [see eq. (1)], is
based on a differential operator of fractional order a,
that can take values between 0 and 1.20 From the FRI
we can to obtain the behavior of an electrical resist-
ance if a ¼ 0, whereas for a ¼ 1 it can be obtained the
behavior of a magnetic inductor. Thus, for an interval
of 0 < a < 1, the FRI can display an intermediate
behavior between the aforementioned limits.

In the next section we describe the application of
the FRI element to the development of the pro-
poused fractional magnetic model (FMM), which
will be used to describe the behavior of the isochro-
nal complex magnetic susceptibility of the polymer–
magnetic nanocomposite, CHN/CoF. It is important
to mention that, as one can deduce from the descrip-
tion given at this section, the use of fractional calcu-
lus for the conception of the FRI give us the oppor-
tunity to account for the distribution of relaxation
times on the magnetic system, associated, for exam-
ple, to particle size distribution, as has been success-
fully approached in the case of the dielectric mani-
festation of the viscoelasticity of polymer-dielectric
materials.30 Moreover, it can give information about
the distribution of energy barriers over which the
spins of the particles relax, and that can be related
to contributions such as surface-to-core exchange
and particles interactions, as has been reported
elsewhere.4

Description of the fractional magnetic model

According to the experimental results, obtained from
the static and dynamic magnetic measurements of
the CHN/CoF nanocomposite, the use of three FRI
elements, to develop the FMM, is proposed. Figure 5
shows the proposed FMM; constitutive equations of
the employed elements are also showed in this fig-
ure. As it can be noticed, each of these FRI elements
are considered into an array like the one showed in
the dashed square. From each array we attempt to
describe the contributions that lead the magnetic
response of the CHN/CoF nanocomposite.

Applying the Fourier transform to the function
V(t), which is equal to the sum of the voltage droop
on each array of the FMM, the complex inductance,
L*, of the model can be expressed as:

L� ¼ L1� þ L2� þ L3� ¼ L10 � iL100ð Þ
þ L20 � iL200ð Þ þ L30 � iL300ð Þ: ð5Þ

From the relation between the inductance and the
magnetic susceptibility, L ¼ k(1 þ v), where k is a
constant which involves geometrical variables of the
inductance, eq. (5) can be rewritten as:

v� ¼ v1� þ v2� þ v3�

¼ v10 � iv100ð Þ þ v20 � iv200ð Þ þ v30 � iv300ð Þ; (6)

where v1*, v2*, and v2* represents the complex mag-
netic susceptibility, described from the arrays 1, 2,
and 3, respectively. From eq. (6), it is possible to
obtain the mathematical expression for v0 and v00 of
the FMM:

v0 ¼ v11 þ v21 þ v31 þ v10 � v11ð Þ A1 þ A2ð Þ
xsað Þ2þ2A2 þ A1

þ v20 � v21ð Þ B1 þ B2ð Þ
xsbð Þ2þ2B2 þ B1

þ v30 � v31ð Þ C1 þ C2ð Þ
xscð Þ2þ2C2 þ C1

; ð7Þ

Figure 5 Fractional magnetic model proposed to describe
the behavior of complex magnetic susceptibility of the
polymer–magnetic CHN/CoF nanocomposite.
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and

v00 ¼ v10 � v11ð ÞA3

xsað Þ2þ2A2 þ A1

þ v20 � v21ð ÞB3

xsbð Þ2þ2B2 þ B1

þ v30 � v31ð ÞC3

xscð Þ2þ2C2 þ C1

; (8)

with: A1 ¼ (xsa)
2a, A2 ¼ xsað Þ1þasin ap

2

� �
, A3 ¼

xsað Þ1þacos ap
2

� �
, B1 ¼ (xsb)

2b, B2 ¼ xsbð Þ1þbsin bp
2

� �
,

B3 ¼ xsbð Þ1þbcos bp
2

� �
, C1 ¼ (xsc)

2c, C2 ¼ xscð Þ1þc

sin cp
2

� �
, and C3 ¼ xscð Þ1þccos cp

2

� �
.

Description of the experimental curves of complex
magnetic susceptibility applying the FMM

To describe the experimental curves of the real and
the imaginary parts of the complex magnetic suscep-
tibility, measured from the CHN/CoF nanocompo-
site, we proceed to the modeling of the experimental
data, from the evaluation of the eqs. (7) and (8). For
this modeling, we selected the curves of the real and
the imaginary parts measured at 250 Hz. It is worth
to mention that there is not any special reason to
select these curves, and they were selected only to
exemplify the modeling of the experimental data
using the proposed FMM. Figure 6 displays the ex-
perimental curves of the real and the imaginary
parts, as well as the theoretical ones, obtained from
the evaluation of eqs. (7) and (8); we also show the
theoretical curves attributed to :(1) intrinsic magnetic
anisotropy of the particles, (2) surface-to-core
exchange at surface–core interfaces in the particles
and (3) interactions among particles (see Fig. 4). It is
important to mention that to evaluate the FMM we
assumed that the response time of spins, s, evolves

following the Néel formalism, since the contributions
that deviates the response of the particles to a coop-
erative relaxation have been already considered by
the contributions associated to the arrays (2) and (3).
As Figure 6 shows, the theoretical curves of the real

and imaginary parts are in good agreement with the
experimental data of the complex magnetic suscepti-
bility of the CHN/CoF nanocomposite. This result
suggests that the parameters, used to model the ex-
perimental curves were properly selected. These pa-
rameters are summarized in the Table I. It is impor-
tant to remark that the magnitude of the energy
barrier attributed to the intrinsic magnetic anisotropy
of the particles in this model is close to that expected
for spinel ferrite nanoparticles systems without sig-
nificant particles interactions.15 Furthermore, the
magnitude of the energy barriers related to the contri-
butions described by the arrays (2) and (3) are close
to that reported for cobalt ferrite nanoparticles sys-
tems with significant particle interactions5; the mag-
nitudes of these energy barriers are also close to those
obtained from the VFL fitting (see inset at Fig. 2).
Accordingly, the experimental data of the dynamic

isochronal complex magnetic susceptibility of this
nanocomposite can be described as follows. At low
temperatures, energetic barriers imposed by contri-
butions associated to arrays (1), (2), and (3) guide
the orientation of the spins to be aligned on the
direction of the particles easy axis, thus, its magnetic
response is mainly leaded by its intrinsic magnetic
anisotropy. As Figure 6(a) shows, the magnitude of
the real part has a magnitude above zero, which
suggests that the introduced magnetic energy (intro-
duced as a form of work over the spins) is partially
stored due to the random arrangement of easy axes
of the particles. As temperature increases, the curve
of the real part depicts a smooth inflection, which is
quite well described by the theoretical curve
obtained from the array (1), and can be understood
as the relaxation of spins over the energetic barrier
related to its intrinsic magnetic anisotropy; this fea-
ture is consistent with the magnitude of the expo-
nent a obtained from the array (1) (see Table I). This
inflection is also observed on the curve of the imagi-
nary part, and as Figure 6(a) shows, can be associ-
ated to the maximum at T1 ¼ 22 K, which is

Figure 6 Description of the experimental data of (a) real
and (b) imaginary parts obtained at 250 Hz by means of
FMM theoretical curves (solid lines) as well as by the con-
tributions (1), (2), and (3).

TABLE I
Values of the Parameters Used to Evaluate the FMM

Parameter

FMM elements

(1) (2) (3)

v1 0.04 0.00 0.00
v0 0.10 0.20 0.23
EA (J) 5.52 � 10�21 1.19 � 10�20 2.01 � 10�20

s0 (s) 1 � 10�11 1 � 10�10 1 � 10�9

a 0.83 0.82 0.80
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displayed by the theoretical curve of the imaginary
part obtained from the array (1).

Moreover, as Figure 6(a) shows, as temperature
continues to increase, the curve of the real part
describes a noticeable change on its slope, and rap-
idly increases its magnitude. This feature is related to
the thermal activation of the spins of the particles,
which become able to fluctuate and to respond to the
applied ac-field. However, as temperature activates
its fluctuation, spins on the surface of the particles
deviate the response of the ferrimagnetically
arranged ones in their cores [see the theoretical curve
obtained from array (2)], increasing the magnetic
energy that is dissipated by the nanocomposite; the
magnitude of the exponent a, obtained from array (2),
is in good agreement with this increment on the dissi-
pated energy. The increment on the dissipated mag-
netic energy is corroborated by the increase on the
magnitude of the imaginary part, as temperature
increases above T2 ¼ 53 K [see Fig. 6(b)].

In addition, as temperature continues to increase
above T2, the slope of curve of the real part tends to
decrease and eventually depicts a plateau-like feature
[see Fig. 6(a)]. This behavior can be understood as the
threshold for collective relaxation of the spins over the
energetic barrier associated to the interaction among
particles, since it occurs at temperatures near to that
related to the maximum of the theoretical curve of the
imaginary part, described by the array (3), at T3 ¼ 105
K [see Fig. 6(b)]; the magnitude of this maximum sug-
gest that the quantity of the dissipated energy during
this relaxation is larger than that observed on the
aforementioned processes, which is in quite well cor-
respondence with the value of the exponent a,
obtained from the array (3). Thus, it is safe to argue
that the cooperative relaxation of particles’ spins is
fully overcome at temperatures above 105 K.

Finally, as it can be noticed in Figure 6, at tempera-
tures above TM, the theoretical curves deviate from the
experimental data of the real and imaginary parts. This
deviation is attributed to the transition of the nanocom-
posite into the superparamagnetic regime, where ther-
mally induced fluctuations overcome the magnetic
work over the spins, which conduce to the vanishing of
the magnetic order on the particles’ assembly.

CONCLUSIONS

Using fractional calculus, as a mathematical tool, it
was possible to describe the contributions that
mainly guide the magnetic response of the studied
polymer–magnetic CHN/CoF nanocomposite. More-
over, through the proposed FMM, it was also possi-
ble to elucidate the behavior of each contribution,
from the assignation of each of it to a separate FMM
array. Finally, it is worth to remark that from the
definition of each array in the FMM, it is possible to

establish that the order of fractional derivative could
be considered as a relative measure of the partial
dissipated or stored magnetic energy, which could
be also associated to a given contribution.
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